A note on the Chevalley-Eilenberg Cohomology for the Galilei and Poincaré Algebras
نویسندگان
چکیده
We construct in a systematic way the complete Chevalley-Eilenberg cohomology at form degree two, three and four for the Galilei and Poincaré groups. The corresponding non-trivial forms belong to certain representations of the spatial rotation (Lorentz) group. In the case of two forms they give all possible central and non-central extensions of the Galilei group (and all non-central extensions of the Poincaré group). The procedure developed in this paper can be applied to any space-time symmetry group. galileiallcohomology.tex (March 3, 2009) p.2
منابع مشابه
Cohomology of 3-dimensional Color Lie Algebras
We develop the cohomology theory of color Lie superalgebras due to Scheunert–Zhang in a framework of nonhomogeneous quadratic Koszul algebras. In this approach, the Chevalley– Eilenberg complex of a color Lie algebra becomes a standard Koszul complex for its universal enveloping algebra. As an application, we calculate cohomologies with trivial coefficients of Zn 2 – graded 3–dimensional color ...
متن کاملOn p-semilinear transformations
In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...
متن کاملModule cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
متن کاملLoday–Quillen–Tsygan Theorem for Coalgebras
The original Loday–Quillen–Tsygan Theorem (LQT) is proven by Loday and Quillen [13] and independently by Tsygan [20]. It states that the ordinary Lie homology (here referred as Chevalley–Eilenberg–Lie homology) of the Lie algebra of the infinite matrices gl(A) over an unital associative algebra A is generated by the cyclic homology of A as an exterior algebra. Although Lie algebras have been st...
متن کاملThe relativistic Lie algebra expansion: from Galilei to Poincaré
We extend a Lie algebra expansion method recently introduced for the (2 + 1)dimensional kinematical algebras to the expansions of the (3 + 1)-dimensional Galilei algebra. One of these expansions goes from the (3 + 1)-dimensional Galilei algebra to the Poincaré one; this process introduces a curvature equal to −1/c, where c is the relativistic constant, in the space of worldlines. This expansion...
متن کامل